ELSEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Nitrogen-doped SiO₂–HNb₃O₈ for rhodamine B photodegradation under visible light

Xiukai Li^{a,b,c,*}, Huigi Pan^{a,b,c}, Qingsong Hu^{a,b,c}, Chi Zhang^{a,b,c}

- ^a China-Australia Joint Research Center for Functional Molecular Materials, Jiangsu University, Zhenjiang 212013, PR China
- ^b Institute of Science, Jiangsu University, Zhenjiang 212013, PR China
- ^c School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China

ARTICLE INFO

Article history: Received 1 November 2010 Received in revised form 3 March 2011 Accepted 4 March 2011 Available online 11 March 2011

Keywords: Niobic acid Nitrogen doping Photocatalysis Visible light Dye degradation

ABSTRACT

Silica-pillared and non-pillared HNb_3O_8 samples were doped with nitrogen for rhodamine B photodegradation under visible light irradiation. The results indicate that silica pillaring could have significant impacts on the photocatalytic activity of the HNb_3O_8 sample. With expanded interlayer spacing and stronger adsorption ability to dye molecules, the SiO_2 pillared and nitrogen-doped HNb_3O_8 sample performed much better than the non-pillared counterpart. The characteristics of samples were investigated by techniques such as XRD, FT-IR, UV-visible diffuse reflectance spectroscopy, SEM, and TEM. The relationships between catalyst structure and performance were discussed.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Semiconductor photocatalysis for environment remediation and solar energy conversion is a topic of great interest [1–4]. Many Ti- and Nb- based metal oxides have been revealed as good UV-type photocatalysts [5–8]. In view of better utilization of solar light, extensive efforts have been devoted to fabricating visible-light-responsive photocatalysts. The mostly adopted method to modify the UV-type photocatalysts for visible light photocatalysis is cation or anion doping [9–12]. Recently, there were also reports on single phase metal oxides that are visible light active, such as Cd₂SnO₄ [13], BiVO₄ [14], and Ag₂ZnGeO₄ [15].

Lamellar titanates and niobates (e.g. K₂Ti₄O₉, HNb₃O₈) are one type of materials constructed by stacked thin sheets built up from metal–oxygen polyhedron units. From the view point of photocatalysis, such layered configuration is favorable for the separation and transportation of photogenerated electrons and holes; moreover, the material could provide more reaction active sites at the interlayer space. Previous research demonstrated that some lamellar titanates and niobates are better photocatalysts than simple TiO₂ and Nb₂O₅, and that the acid phases (H*-exchanged ones) could show much higher photocatalytic activities than their origi-

nal salt phases [16–19]. The layered configuration of lamellar solid acids enables the materials to have unique intercalation properties [19-21]. It has been demonstrated that many organic and inorganic guest species could be intercalated into the interlayer space of lamellar solid acids, and that the obtained hybrid materials could show improved thermal stability, larger pore size, and better catalytic activity [19–23]. In the case of photocatalytic water splitting, TiO₂ or silica pillared lamellar solid acids showed notably improved activities under UV or visible light irradiation [22-24]. Recently, some transition metal oxides intercalated solid acids were reported to be visible light active [25-27]. By depositing noble metals such as Pt onto the interlayer surface, the photocatalytic activities of lamellar solid acids could be notably improved [22,28]. Nitrogen doping is one technique commonly adopted to modify wide band gap materials for visible light photocatalysis [2,11]. The intercalation property of solid acid can also have profound influence on nitrogen doping. When urea was used as a nitrogen source, it was found that the intercalation of alkaline urea species not only helped to stabilize the layered structure of solid acids but also enabled easier nitrogen doping [29,30].

There have been few reports about visible light photocatalysis over pillared solid acids. HNb $_3$ O $_8$ is a simple lamellar niobic acid with protonic acidity stronger than that of titanic acid. Nitrogendoped HNb $_3$ O $_8$ exhibited superior photocatalytic activity than nitrogen-doped Nb $_2$ O $_5$ and KNb $_3$ O $_8$ under visible light [29,30]. Thus it is very intriguing to further modify the nitrogen-doped HNb $_3$ O $_8$ for better activity. In the present study, HNb $_3$ O $_8$ was purposely

^{*} Corresponding author at: Institute of Science, Jiangsu University, No. 301 Xuefu Rd., Zhenjiang 212013, PR China. Tel.: +86 511 88797815; fax: +86 511 88797815. E-mail address: li.xiukai@gmail.com (X. Li).

pillared with silica and then doped with nitrogen for visible light photocatalysis. The physico-chemical properties of samples and the effect of silica pillaring on the photocatalytic activity were investigated in detail.

2. Experimental

The HNb₂O₈ solid acid was prepared by reacting KNb₂O₈ with nitric acid [31,32]. KNb₃O₈ was first prepared by heating a mixture of Nb₂O₅ and K₂CO₃ in a molar ratio of 3:1 at 900 $^{\circ}$ C for 10 h. The KNb₃O₈ sample was then stirred in nitric acid (5 mol L⁻¹, 60 ml per gram of KNb₃O₈) at room temperature for 2 days for the generation of HNb₃O₈. The HNb₃O₈ sample recovered from the acid solution was washed thoroughly with distilled water and then dried at 70 °C for 12 h. The SiO2 pillared HNb3O8 sample was prepared by the two-step ion-exchange method [31]; n-dodecylamine and tetraethyl orthosilicate (TEOS) were used as, respectively, the pre-expanding reagent and silicon source. The n-dodecylamine and TEOS intercalated samples were designated as C₁₂-HNb₃O₈ and TEOS-HNb₃O₈, respectively. The TEOS-HNb₃O₈ sample was calcined at 500 °C for 4h in air for the formation of SiO₂ pillared HNb₃O₈ (designated as SiO2-HNb3O8). The nitrogen doping of HNb3O8 and SiO2-HNb3O8 was performed according to the procedure described previously [29,30], and urea was used as a nitrogen source. Taking the doping of HNb₃O₈ for an example, HNb₃O₈ (1.0 g) was finely ground with urea (2.0 g), and then this combination was heated in a covered crucible at 400 °C for 2 h. The yellow-colored product was crushed, washed well with diluted nitric acid and distilled water, and then dried at 70 °C overnight. The nitrogen-doped samples were designated as HNb₃O₈-N and SiO₂-HNb₃O₈-N, respectively.

The phase compositions of samples were identified by X-Ray Powder Diffraction (Cu K_{α} radiation, Bruker AXS-D8) in the 2θ range of 3–90°. The UV–visible diffuse reflectance spectra were recorded at room temperature on a Shimadzu UV-2450 UV–vis spectrometer with barium sulfate as the reference sample. Specific surface areas of samples were deduced by the BET method (N_2 adsorption) with a NOVA-2000E instrument. FT-IR spectra of the samples were collected on a Nicolet Nexus 470 FT-IR spectrophotometer at room temperature by KBr method. Morphologies of samples were characterized using a scanning electron microscope (JSM-7001F, JEOL) and a high resolution transmission electron microscope (HR JEM-2100, JEOL).

In the activity test, 0.2 g catalyst was suspended in 100 ml rhodamine B (RhB) aqueous solution (10.0 mg L⁻¹, PH value: 7) in a pyrex reactor. The suspension was stirred in the dark for about 40 min before light was turned on. A 350 W Xe-lamp (Nanshen Company, Shanghai) equipped with UV cutoff filter (λ > 400 nm) and a water filter was used as light source. The average intensity of the incident light was ca. 50.0 mW cm⁻². At given irradiation time intervals, 3 ml of the reaction mixture was sampled, and separated by filtration. The concentration of RhB was determined by monitoring the changes in the absorbance maximized at 554 nm.

3. Results and discussion

 $\rm HNb_3O_8$ is isostructural with $\rm KNb_3O_8$ and is crystallized in an orthorhombic symmetry [29,33]. It has layered structure constructed of 2D $\rm Nb_3O_8^-$ anion slices built by corner- and edgesharing $\rm NbO_6$ octahedra, the $\rm H^+$ cations are located between the slices. Fig. 1 shows the XRD patterns of $\rm HNb_3O_8$ and the interca-

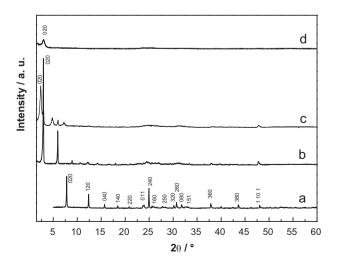
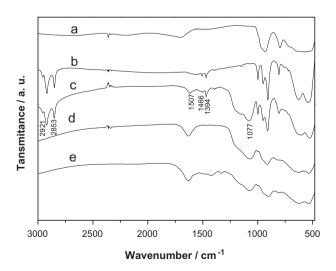



Fig. 1. XRD patterns of (a) HNb_3O_8 ; (b) $C_{12}-HNb_3O_8$; (c) $TEOS-HNb_3O_8$; (d) $SiO_2-HNb_3O_8$.

lated derivatives. The 020 diffraction peak at $2\theta = 7.8^{\circ}$ for HNb₃O₈ is characteristic of the layered structure, and the d value (ca. 11.3 Å) corresponds to the interlayer distance. Intercalation of guest components at the interlayer space notably changed the interlayer distance of HNb₃O₈. From Fig. 1b one can see that the interlayer distance d_{020} was remarkably expanded to 30.2 Å after n-dodecylamine intercalation. The interlayer distance d_{020} further increased to 36.8 Å after the sample was reacted with TEOS (Fig. 1c). Upon heating at 500 °C for 4h in air, the intercalated TEOS transformed to SiO₂. As seen from Fig. 1d, the 020 diffraction peak was clearly observed for the SiO₂-HNb₃O₈ sample, signifying that the silica pillars were formed and the layered structure was well retained for the host material. In contrast, pure HNb₃O₈ is thermally unstable and usually decomposes to R'-Nb2O5 at temperatures above 200 °C [29,30]. The d_{020} value (30.2 Å) of SiO₂-HNb₃O₈ is much larger than that (11.3 Å) of non-pillared HNb₃O₈; the value is also lager than that (25.3 Å) of a silica pillared HNb₃O₈ sample prepared with n-decylamine as pre-expanding reagent [31], probably because of the longer chain length of *n*-dodecylamine used in this study. Taking into account the thickness of the Nb₃O₈⁻ anion slice is 7.5 Å [31], the interlayer spacing of SiO₂-HNb₃O₈ was calculated to be 22.7 Å (30.2 Å subtract 7.5 Å), contrast to only 3.8 Å (11.3 Å subtract 7.5 Å) of HNb₃O₈. Owing to the notably expanded interlayer distance, the surface area value of SiO₂-HNb₃O₈ was as large as 220.1 m² g⁻¹, contrasted to only $7.2 \,\mathrm{m}^2 \,\mathrm{g}^{-1}$ of the non-pillared sample.

Fig. 2 shows the FT-IR spectra of HNb₃O₈ and its intercalated derivatives. The IR absorption in the range of 400-1000 cm⁻¹ is assigned to the vibration of the Nb₃O₈⁻ host slice [31]. Absorptions in the range of 2853-2957 cm⁻¹ and 1394-1507 cm⁻¹ observed for C₁₂-HNb₃O₈ (Fig. 2b) and TEOS-HNb₃O₈ (Fig. 2c) are ascribed to, respectively, the C-H symmetric/asymmetric stretching and C-H bending of the intercalated organic guests [31,34]. Additional absorptions at 1077 cm⁻¹ attributable to the vibration of Si-O-Si linkages [31,34] were also observed for TEOS-HNb₃O₈ (Fig. 2c) and SiO₂-HNb₃O₈ (Fig. 2d), indicating that siliceous species (TEOS or SiO₂) have successfully intercalated into the host material. The absorptions of C-H stretching and bending models were not observed for SiO₂-HNb₃O₈, signifying that the intercalated organic species were completed decomposed after the sample was heated at 500 °C for 4h in air. The spectrum of nitrogen-doped SiO₂-HNb₃O₈ is also shown (Fig. 2e). Compared with the spectrum of undoped SiO₂-HNb₃O₈ (Fig. 2d), the IR absorption assignable to the Nb₃O₈⁻ host slice (400-1000 cm⁻¹) is almost unchanged for

Fig. 2. FT-IR spectra of (a) HNb_3O_8 ; (b) $C_{12}-HNb_3O_8$; (c) $TEOS-HNb_3O_8$; (d) $SiO_2-HNb_3O_8$; (e) $SiO_2-HNb_3O_8$ -N.

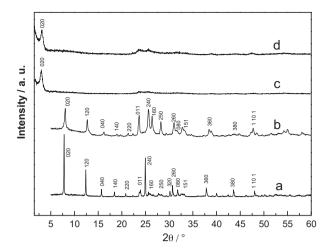
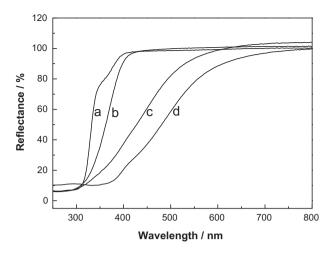



Fig. 3. XRD patterns of (a) $\text{HNb}_3\text{O}_8;$ (b) $\text{HNb}_3\text{O}_8\text{-N};$ (c) $\text{SiO}_2\text{-HNb}_3\text{O}_8;$ (d) $\text{SiO}_2\text{-HNb}_3\text{O}_8\text{-N}.$

 SiO_2 -HNb₃O₈-N, signifying that the structure of the HNb₃O₈ host was basically retained after nitrogen doping.

Fig. 3 shows the XRD patterns of the nitrogen-doped and undoped HNb₃O₈ and SiO₂–HNb₃O₈ samples. All the samples were doped with nitrogen by the solid state-reaction method with urea as a nitrogen source. As seen from Fig. 3b, the layered structure was well retained for the HNb₃O₈ sample after nitrogen doping. It was proposed that the intercalation of alkaline urea helped to stabilize the layered structure of HNb₃O₈ during the heating process [29,30]. From Fig. 3c and d one can see that the phase composition and peak intensity was almost unchanged for SiO₂–HNb₃O₈–N, signifying that the SiO₂–HNb₃O₈ sample is stable in nitrogen doping.

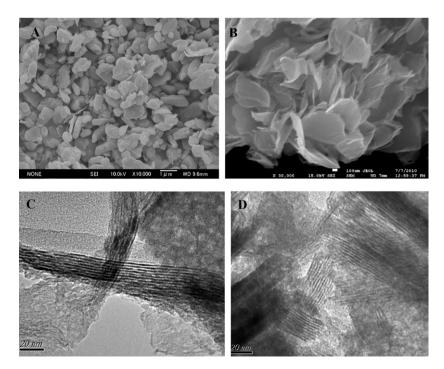
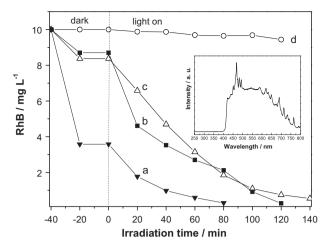

The morphologies of samples were investigated by the scanning electron microscopy (SEM) and transmission electron microscopy (TEM), and the images of samples were shown in Fig. 4. Shown in Fig. 4A is the SEM image of HNb₃O₈ containing a number of micron-sized particles. After the sample was pillared with silica, the morphology of SiO₂-HNb₃O₈ changed from irregular parti-

Fig. 5. Diffuse reflectance spectra of (a) HNb_3O_8 ; (b) $SiO_2-HNb_3O_8$; (c) $SiO_2-HNb_3O_8-N$; (d) HNb_3O_8-N .

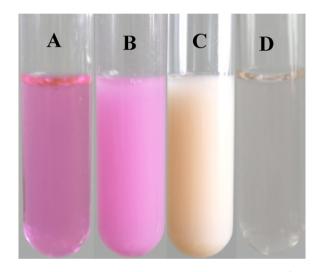
cles to thin flakes with thickness of about 100 nm (Fig. 4B); this change might be due to the exfoliation and aggregation of the $\mathrm{Nb_3O_8^-}$ nano-sheets during the sample synthesis process. Figs. 4C and D shows the TEM images of undoped and nitrogen doped $\mathrm{SiO_2-HNb_3O_8}$ samples, respectively. The layered texture could be clearly observed for both samples, and this further support that the $\mathrm{SiO_2-HNb_3O_8}$ sample is stable in the process of nitrogen doping.

Nitrogen doping is one of the most commonly used methods to modify UV-type photocatalysts for visible light photocatalysis. Gaseous ammonia, melamine, and urea could be used as nitrogen source [2,29,30,35–40]. Compared with gaseous ammonia, urea is easier to handle and control, and therefore was used as nitrogen source in the present study. Fig. 5 shows the reflectance spectra of the nitrogen-doped and undoped samples. The undoped HNb₃O₈ and SiO₂–HNb₃O₈ samples are white colored and absorb only the UV light. The band gaps were estimated from the onsets of the sharp absorption edges and the values are 3.5 eV and 3.1 eV for HNb₃O₈ and SiO₂–HNb₃O₈ (Table 1), respectively. The lowering of

 $\textbf{Fig. 4.} \hspace{0.2cm} \textbf{SEM images of (A) HNb}_3O_8 \hspace{0.2cm} \textbf{and (B) SiO}_2 - \textbf{HNb}_3O_8; \hspace{0.2cm} \textbf{TEM images of (C) SiO}_2 - \textbf{HNb}_3O_8 \hspace{0.2cm} \textbf{and (D) SiO}_2 - \textbf{HNb}_3O_8 - \textbf{N.} \\ \textbf{SIO}_2 - \textbf{HND}_3O_8 - \textbf{N.} \\ \textbf{SIO}_2 - \textbf{HND}_3O_8 - \textbf{N.} \\ \textbf{SIO}_2 - \textbf{HND}_3O_8 - \textbf{N.} \\ \textbf{SIO}_3 - \textbf{N.} \\ \textbf{SIO}$


Table 1 Physical characteristics of samples.

Samples	d_{020} (Å)	Interlayer spacing (Å)	Band gap (eV) ^a
HNb ₃ O ₈	11.3	3.8	3.5
HNb_3O_8-N	11.0	3.5	2.1
SiO ₂ -HNb ₃ O ₈	30.2	22.7	3.1
$SiO_2-HNb_3O_8-N$	28.5	21.0	2.3


^a The band gap values were calculated according to the following equation: Eg: $hC/\lambda_{os} = 1240 \, \text{eV}/\lambda_{os}$ (h: Plank constant; C: the speed of light in vacuum). λ_{os} means the onset absorption; it was taking from the DRS curve shown in Fig. 5.

the band gap from HNb₃O₈ to SiO₂-HNb₃O₈ might be due to the partial dehydration of the host part of SiO₂-HNb₃O₈ in the process of sample preparation. The HNb₃O₈-N and SiO₂-HNb₃O₈-N samples are yellow colored and show obvious absorption in the visible region. Compared with the undoped ones, the absorption edges of HNb₃O₈-N and SiO₂-HNb₃O₈-N shift notably to the longer wavelength end, and the band gaps were estimated to be 2.1 eV and 2.3 eV, respectively. The significant reduction in the band gap caused by nitrogen doping is probably due to the particular properties of lamellar solid acid and the using of urea as a nitrogen precursor. It was revealed that the intercalation of urea to lamellar solid acids could facilitate nitrogen doping in larger amount into the thin anion slices of the solid acid [29,30]. Nitrogen doping could shift the top of valence band to a more negative position and leads to a narrowed band gap [2]. The HNb₃O₈-N sample absorbs more visible light than SiO₂-HNb₃O₈-N, signifying that more nitrogen atoms were doped into the former sample. Since the SiO₂-HNb₃O₈ sample has been heated at 500 °C for 4 h during the preparation process, it should be partially dehydrated and thus possesses fewer protons at the interlayer space than the non-pillared one. As a consequence the interaction between SiO2-HNb3O8 and urea should be lower than that in the HNb₃O₈ case, and therefore less nitrogen atoms were doped into the Nb₃O₈⁻ slices of SiO₂-HNb₃O₈. Because the atomic diameters and the number of valence electrons of N and O are different, larger amount of N doping would result in defect sites and non-stoichiometry in the material. Generally, there is an optimum amount of doped N to achieve the best activity [35,36]. It was reported that codoping with cations and anions could depress the formation of defect sites and enhance the photocatalytic activity [41].

In the present study, the HNb₃O₈-N and SiO₂-HNb₃O₈-N samples were evaluated for rhodamine B (RhB) photodegradation in neutral aqueous solution under visible light ($\lambda > 400 \, \text{nm}$) irradiation. As shown in Fig. 6, the photolysis of RhB (without any catalyst) under visible light irradiation was very slow, and less than 5% of RhB was converted after 120 min of irradiation. The SiO₂-HNb₃O₈-N sample showed stronger adsorption ability to RhB than HNb₃O₈-N, possibly because of its much greater surface area. Approximately 64.2% RhB was adsorbed on SiO2-HNb3O8-N when the adsorption-desorption equilibrium was established; in contrast, only 16.4% RhB was adsorbed on HNb₃O₈-N. The concentration of RhB decreased continuously with visible light irradiation. Over the SiO₂-HNb₃O₈-N sample ca. 98% of RhB was converted after 80 min of irradiation, while over the HNb₃O₈-N sample the same extent of RhB conversion took more than 140 min. The pictures of the RhB solution before and after photocatalytic reaction over the SiO₂-HNb₃O₈-N sample are shown in Fig. 7. From Fig. 7 one can see that, after 80 min of visible light irradiation, not only RhB in the solution phase but also the RhB molecules adsorbed on the surface of SiO₂-HNb₃O₈-N were degraded. While over the HNb₃O₈-N sample, after the same irradiation time the reaction suspension was still red (the picture is not shown). It is evident that over the SiO₂-HNb₃O₈-N sample RhB was indeed degraded instead of being simple adsorbed on sample surface. A nitrogen-

Fig. 6. Photocatalytic degradation of RhB over: (a) SiO_2 -HNb₃O₈-N; (b) TiO_2 -N; (c) HNb₃O₈-N. The photolysis of RhB (line d) was also shown for comparison. The inset shows the wavelength distribution of the incident light applied in activity test. The average intensity of the irradiation light was ca. 50.0 mW cm⁻².

Fig. 7. Pictures of RhB solution. (A) The original RhB solution $(10 \, \mathrm{mg} \, \mathrm{L}^{-1})$; (B) the reaction mixture (with the SiO₂-HNb₃O₈-N photocatalyst) before light irradiation; (C) the reaction mixture after 80 min of visible light (λ > 400 nm) irradiation; (D) the filtrate of (C).

doped anatase phase TiO₂ was prepared by the same method and was evaluated for comparison. As shown in Fig. 6, under identical reaction conditions, the SiO₂-HNb₃O₈-N sample also performed much better than nitrogen-doped TiO2. The current study demonstrated that by pillaring with silica the activity of HNb₃O₈-N could be notably improved. Firstly, dye molecules can be oxidized or be reduced directly on the surface of photocatalysts, thus the stronger adsorption ability of the SiO₂-HNb₃O₈-N sample should contribute to a higher activity. As dye photodegradation in liquid phase usually follow the pseudo-first-order [3], the stronger adsorption ability of SiO₂-HNb₃O₈-N enhanced the concentration of RhB on sample surface, and this certainly contributed to a higher rate of RhB conversion. Secondly, it was revealed that the reaction active sites of lamellar solid acids lie at the interlayer surface of the materials [22,28]. With notably expanded interlayer distance, the reaction active sites at the interlayer space of SiO2-HNb3O8-N should be more accessible to the reaction substrates. Water molecules can also be more easily intercalated into the SiO₂-HNb₃O₈-N sample. The intercalated water molecules could trap the photoexcited holes at the interlayer surface to form the active hydroxyl radicals (OH•), this facilitates the separation of electron-hole pairs and accounts in certain extent for the higher photocatalytic activity. Lastly, since $SiO_2-HNb_3O_8-N$ was doped with smaller amount of nitrogen atoms, the sample should possess less lattice oxygen defects. Because of the same reason, the valence band top of $SiO_2-HNb_3O_8-N$ did not shift toward the negative potential as much as that of HNb_3O_8-N (Fig. 5); as a consequence the photogenerated holes at the valence band of $SiO_2-HNb_3O_8-N$ should have stronger oxidation ability than that in HNb_3O_8-N , and this might also contribute partly to the higher activity of $SiO_2-HNb_3O_8-N$. In summary, the $SiO_2-HNb_3O_8$ sample possesses particular properties like larger surface area, expanded interlayer space, and better nitrogen doping character; these aspects contributed to the overall activity of the $SiO_2-HNb_3O_8-N$ photocatalyst.

4. Conclusions

Silica-pillared and non-pillared HNb₃O₈ samples were doped with nitrogen for RhB photodegradation under visible light irradiation. As a result of silica pillaring, the interlayer spacing of SiO₂-HNb₃O₈ was expanded from 3.8 to 22.7 Å, and the surface area value of the sample increased from 7.2 to 220.1 $\text{m}^2\,\text{g}^{-1}$. The SiO₂-HNb₃O₈-N and HNb₃O₈-N samples showed good absorption in visible region after nitrogen doping, and their band gaps were 2.3 eV and 2.1 eV, respectively. SiO₂-HNb₃O₈-N showed stronger adsorption ability to RhB than HNb₃O₈-N, over the former sample 64.2% RhB was adsorbed while over the latter sample 16.4% RhB was adsorbed. With expanded interlayer spacing, better adsorption ability and optical property, the SiO2-HNb3O8-N sample performed much better than HNb₃O₈-N. Approximately, 98% RhB was degraded over SiO₂-HNb₃O₈-N after 80 min of visible light irradiation, while over HNb₃O₈-N the same extent of RhB degradation took more than 140 min. The present study enables a deeper understanding about the chemistry and photocatalysis over silicapillared lamellar solid acid.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 21003064) and the Research Foundation of Jiangsu University (No. 1283000372/3).

References

[1] K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, K. Domen, Nature 440 (2006) 295.

- [2] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293 (2001) 269-
- [3] X. Li, J. Ye, J. Phys. Chem. C 111 (2007) 13109-13116.
- [4] M. Zhang, H. Yang, T. Xan, Z.Q. Wei, J.L. Jiang, Y.C. Feng, X.Q. Liu, J. Alloys Compd. 509 (2011) 809–812.
- [5] Z. Yu, S.S.C. Chuang, Appl. Catal. B 83 (2008) 277–285.
- [6] N. Quici, M.L. Vera, H. Choi, G.L. Puma, D.D. Dionysiou, M.I. Litter, H. Destaillats, Appl. Catal. B 95 (2010) 312–319.
- [7] T. Puangpetch, T. Sreethawong, S. Yoshikawa, S. Chavadej, J. Mol. Catal. A 312 (2009) 97–106.
- [8] M.Y. Guo, M.K. Fung, F. Fang, X.Y. Chen, A.M.C. Ng, A.B. Djurisic, W.K. Chan, J. Alloys Compd. 509 (2011) 1328–1332.
- [9] D. Wang, J. Ye, T. Kako, T. Kimura, J. Phys. Chem. B 110 (2006) 15824–15830.
- [10] J.R. Konta, T. Ishii, H. Kato, A. Kudo, J. Phys. Chem. B 108 (2004) 8992-8995.
- [11] S.M. Ji, P.H. Borse, H.G. Kim, D.W. Hwang, J.S. Jang, S.W. Bae, J.S. Lee, Phys. Chem. Chem. Phys. 7 (2005) 1315–1321.
- [12] D. Wu, M. Long, W. Cai, C. Chen, Y. Wu, J. Alloys Compd. 502 (2010) 289-294.
- [13] X. Huang, J. Lv, Z. Li, Z. Zou, J. Alloys Compd. 507 (2010) 341-344.
- [14] C. Chung, C. Lu, J. Alloys Compd. 502 (2010) L1–L5.
- [15] X. Li, S. Ouyang, N. Kikugawa, J. Ye, Appl. Catal. A 334 (2008) 51-58.
- [16] J. Yosbimura, Y. Ebina, J. Kondo, K. Domen, J. Phys. Chem. 97 (1993) 1970–1973
- [17] L. Zhang, W. Zhang, L. Lu, X. Yang, X. Wang, J. Mater. Sci. 41 (2006) 3917-3921.
- [18] K. Domen, J. Yoshimura, T. Sekine, A. Tanakaa, T. Onishi, Catal. Lett. 4 (1990) 339–344.
- [19] K. Domen, Y. Ebina, T. Sekine, A. Tanakaa, J. Kondo, C. Hirose, Catal. Today 16 (1993), 479–466.
- [20] X. Wang, W. Hou, H. Wang, Q. Yan, Catal. Commun. 3 (2002) 275-280.
- [21] X. Wang, W. Hou, Q. Yan, Chem. Lett 3 (2001) 188-189.
- [22] S. Yin, D. Maeda, M. Ishitsuka, J. Wu, T. Sato, Solid State Ionics 151 (2002) 377–383.
- [23] X. Li, B. Yue, J. Ye, Appl. Catal. A 390 (2010) 195-200.
- [24] Y. Ebina, A. Tanaka, J.N. Kondo, K. Domen, Chem. Mater. 8 (1996) 2534-2538.
- [25] T.W. Kim, S. Hwang, S.H. Jhung, J. Chang, H. Park, W. Choi, J. Choy, Adv. Mater. 20 (2008) 539–542.
- [26] T.W. Kim, S.G. Hur, S. Hwang, H. Park, W. Choi, J. Choy, Adv. Funct. Mater. 17 (2007) 307–314.
- [27] J. Wu, Y. Cheng, J. Lin, Y. Huang, M. Huang, S. Hao, J. Phys. Chem. C 111 (2007) 3624–3628.
- [28] T. Takata, A. Tanaka, M. Hara, J.N. Kondo, K. Domen, Catal. Today 44 (1998) 17–26.
- [29] X. Li, N. Kikugawa, J. Ye, Adv. Mater. 20 (2008) 3816-3819.
- [30] X. Li, N. Kikugawa, J. Ye, Chem. Eur. J. 15 (2009) 3538-3545.
- [31] X. Guo, W. Hou, W. Ding, Y. Fan, Q. Yan, Y. Chen, Micropor. Mesopor. Mater. 80 (2005) 269–274.
- [32] X. Jing, Y. Li, Q. Yang, Q. Yin, Mater. Sci. Eng. B 110 (2004) 18-22.
- [33] R. Nedjar, M.M. Borel, B. Raveau, Mater. Res. Bull. 20 (1985) 1291–1296.
- [34] W. Hou, L. Xu, Q. Yan, J. Chen, Chin. J. Inorg. Chem. 18 (2002) 744-745.
- [35] T. Murase, H. Irie, K. Hashimoto, Phys. Chem. B 108 (2004) 15803–15807.
- [36] H. Shi, X. Li, H. Iwai, Z. Zou, J. Ye, J. Phys. Chem. Solid 70 (2009) 931–935.
 [37] M. Sathish, B. Viswanathan, R.P. Viswanath, Appl. Catal. B 74 (2007) 307–312.
- [38] K. Kobayakawa, Y. Murakami, Y. Sato, Photochem. Photobio. A 170 (2005) 177-179.
- [39] J. Wang, S. Yin, M. Komatsu, Q. Zhang, F. Saito, T. Sato, Appl. Catal. B 52 (2004) 11–21.
- [40] K.R. Reyes-Gil, Y. Sun, E. Reyes-Garcia, D. Raftery, J. Phys. Chem. C 113 (2009) 12558–12570.
- [41] M. Miyauchi, M. Takashio, H. Tobimatsu, Langmuir 20 (2004) 232–236.